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FTFT I: Imaginary Time Formalism

– The idea of the imaginary time formalism is to define τ = i t
and exchange Minkowski time for 0 < τ < β where β = 1/T

– Before defining the partition function we consider the
transition amplitude from |ϕ0〉 at t = 0 to |ϕ1〉 at t = t1

〈ϕ1| e−iHt1 |ϕ0〉 (1)

– Converting to the Euclidean picture, we can write the
partition function for a quantum system

Z = tr e−βH =
∑
ϕ

〈ϕ| e−βH |ϕ〉

= N(β)

∫
periodic

Dϕ exp{−
∫ β

0
dτ

∫
d3x L} (2)

– The periodicity of ϕ is enforced by the trace over states
(anti-periodic for fermions) [1]
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FTFT II: Feynman Rules

– We have periodicity of ϕ(~x , τ) in the interval 0 < τ < β, so
decompose ”time” into Fourier modes

– As we have seen in many applications, periodic boundary
conditions quantize our system, giving ωn = 2πn/β (bosons
and ghosts), the Matsubara frequency

– We learned in QFT II how to get Feynman rules through
functional methods and we can use the same method at finite
temperature by making the following substitutions∫

d4k

(2π)4
→ i

β

∑
n

∫
d3k

(2π)3

k0 → iωn

(2π)4δ4(k1 + k2 + · · ·)→ 1

i
(2π)3βδωn1 +ωn2 +···

× δ3(~k1 + ~k2 + · · ·) (3)
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Effective Potential I

– The finite temperature effective potential is obtained
identically to the zero temperature analogue

V β(ϕ̂) = −(space-time volume)−1 Γβ(ϕ̄)|ϕ̄=ϕ̂ (4)

– ϕ̄ is the average classical field and ϕ̂ is the nonzero vacuum
expectation value that induces the symmetry breaking

– As we have learned, symmetry breaking occurs when
∂V β(ϕ̂)/∂ϕ̂ = 0 for nonzero ϕ̂

– Now we can break up the potential into zero temperature
piece and finite temperature piece

V β(ϕ̂) = V 0(ϕ̂) + V̄ β(ϕ̂) (5)
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Effective Potential II: Symmetry Restoration

– For potentials bounded from below, the requirement for
symmetry persistence is

∂V β(ϕ̂2)

∂ϕ̂2
|ϕ̂6=0 > 0 (6)

– A necessary condition for symmetry persistence is now be
written

∂V 0(ϕ̂2)

∂ϕ̂2
|ϕ̂=0 +

∂V̄ β(ϕ̂2)

∂ϕ̂2
|ϕ̂=0 ≥ 0 (7)

– The first term in the above equation is the derivative of the
classical potential, m2/2 < 0 for our purposes

– This inequality tells us that determining if the symmetry is
broken depends on the relative strengths of the ϕ̂2 terms
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Effective Potential III: Critical Temperature

– Now we define the critical temperature of symmetry
restoration

∂V̄ βc (ϕ̂2)

∂ϕ̂2
|ϕ̂=0 = −m2

2
(8)

– The zero temperature piece of the effective potential contains
symmetry breaking and thus a negative m2

– The finite temperature piece contributes positively to m2

– At critical temperature βc the two terms balance out and the
symmetry breaking is removed [2]
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One Loop I: Interacting Scalar Field ϕ4

– A precursor to the effective potential is the finite temperature
Green’s function

Dβ(x − y) =
tr e−βHTϕ(x)ϕ(y)

tr e−βH
(9)

– Using the machinery of functional determinants we learned in
QFT II we know that we will encounter

log Det iD−1
β (x − y) = (space-time volume) tr log iD−1

β (k)
(10)

– The tree-level piece of the effective potential is easily
computed and temperature independent

V 0(ϕ̂2) =
1

2
m2ϕ̂2 +

λ

4!
ϕ̂4 (11)
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One Loop II: Effective Potential

– Now to calculate the one loop temperature dependent
effective potential

V β
1 (ϕ̂2) =

−i
2

tr log(i D−1(ϕ̂; k))

=
1

2β

∑
n

∫
d3k

(2π)3
log(k2 −M2)

=
1

2β

∑
n

∫
d3k

(2π)3
log(−ω2

n − ω2
k) (12)

– M2 = m2 + 1
2λϕ̂

2, ωn is the Matsubara frequency,

ωk =
√
~k2 + M2 contributes to the zero point energy of the

vacuum
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One Loop III: High Temperature Limit

– Computing the sum requires some clever manipulation, see
appendix for details, the result is

V β
1 (ϕ̂2) = V 0

1 (ϕ̂2) + V̄ β
1 (ϕ̂2)

=

∫
d3k

(2π)3

ωk

2
+

1

β

∫
d3k

(2π)3
log(1− e−βωk ) (13)

– The second term is the free energy of an ideal bose gas!

– Now we approximate the second term by expanding in the
limit β → 0, the high temperature limit

V̄ β
1 (ϕ̂2) = − π2

90β4
+

M2

24β2
− 1

12π

M3

β

− 1

64π2
M4 logM2β2 +

c

64π2
M4 +O(M6β2) (14)
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One Loop IV: Critical Temperature

– Using the definition of βc defined previously, we calculate the
critical temperature for the symmetry restoration

1

β2
c

=
−12m2

1
2λ

(15)

– This result only depends on the T 2 term in the series

– As a consistency check, take λ to be small and we see that
the critical temperature is indeed large

– So we now have a phase transition, but what order is it?
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Phase Transition I
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Figure 1: Veff at varying temperatures

– This plot shows a second order phase transition, but the one
loop analysis cannot unambiguously tell us what order
transition occurs
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Phase Transition II

– In the calculation of the one loop effective potential, we may
worry about the strength of − 1

12π
M3

β

– This term includes ϕ̂3 and if relevant can cause a first order
phase transition

Figure 2: First order phase transition (Senaha)



14/19

Phase Transition III

– To determine the order we must resum the series but this also
contains ambiguity

– If one only includes a resummation of daisy or superdaisy
diagrams, the transition is first order

– If along with daisy/superdaisy one includes sunset diagrams
the phase transition is determined to be second order

– Peskin and Schroeder show that ϕ4 has second order phase
transition at zero temperature so the latter resummation is
considered correct [3] [4]

(a) Superdaisy
(b) Sunset

Figure 3: Borrowed from L. Dolan and R. Jackiw [2]



15/19

Gauge Theory

– Extension to gauge theory is nontrivial because the partition
function is gauge dependent

– Only physical gauges will give meaningful results, for example
consider the Feynman gauge

logZ = 3

∫
d3k

(2π)3
[
−βωk

2
− log(1− e−βωk )]

+

∫
d3k

(2π)3
[
−βωk

2
− log(1 + e−βωk )] (16)

– There are two extra unphysical states, the longitudinal and
timelike photons [1]

– Bernard solves this problem with Fadeev Popov ghosts and
defines a gauge-invariant partition function that is equal to
tr e−βH only in physical gauges
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EWPT

– The SM case of symmetry restoration is more complicated
because the previously real scalar is now a complex doublet
and we have additional interactions with SM particles not
included in ϕ4

– Following Senaha, the effective potential for the SM case
considering first order phase transition is

Veff(ϕ,T ) ' D(T 2 − T 2
0 )ϕ2 − ET |ϕ|3 +

λT
4
ϕ4 + · · · (17)

– The cubic term in ϕ is indicative of a first order PT

– Numerical calculation gives TC ' 163.4 GeV
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Conclusion

– The difficulty of doing finite temperature studies of phase
transitions is that they are generically non-perturbative

– Senaha suggests that lattice calculations are a better
approach for numerical results

– Finite temperature field theory has interesting consequences
for the SM and cosmology and hopefully this presentation has
piqued your interest

– First order phase transitions can create gravitational waves
which recently has become a very interesting observable (ask
Anthony)
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Appendix: Computing Sum

– Simplest method following Jackiw

ν(E ) =
∑
n

log(
4π2n2

β2
+ E 2) (18)

∂ν(E )

∂E
=

∑
n

2E

4π2n2/β2 + E 2
(19)

∞∑
n=1

y

y2 + n2
= − 1

2y
+

1

2
π cothπy (20)

ν(E ) = 2β[
E

2
+

1

β
log(1− e−βE )] + indep. E (21)
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