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FTFT I: Imaginary Time Formalism

— The idea of the imaginary time formalism is to define 7 =i t
and exchange Minkowski time for 0 < 7 < 3 where 5 =1/T

— Before defining the partition function we consider the
transition amplitude from |pg) at t =0 to |p1) at t = 3

(p1] €=M o) (1)

— Converting to the Euclidean picture, we can write the
partition function for a quantum system
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= N(B) /p eriOdichp exp{— /0 ’ dr / d®x Ly (2)

— The periodicity of ¢ is enforced by the trace over states
(anti-periodic for fermions) [1]



FTFT Il: Feynman Rules

— We have periodicity of ¢(x,7) in the interval 0 < 7 < f3, so
decompose "time” into Fourier modes

— As we have seen in many applications, periodic boundary
conditions quantize our system, giving w, = 27n//3 (bosons
and ghosts), the Matsubara frequency

— We learned in QFT Il how to get Feynman rules through
functional methods and we can use the same method at finite
temperature by making the following substitutions
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Effective Potential |

— The finite temperature effective potential is obtained
identically to the zero temperature analogue

VA(p) = —(space-time volume) ™ T7()| 5= (4)

— @ is the average classical field and ¢ is the nonzero vacuum
expectation value that induces the symmetry breaking

— As we have learned, symmetry breaking occurs when
oVB(p)/0p = 0 for nonzero @

— Now we can break up the potential into zero temperature
piece and finite temperature piece

V(@) = VO(p) + VP () (5)



Effective Potential Il: Symmetry Restoration

— For potentials bounded from below, the requirement for
symmetry persistence is

oVB($?)

S o0 >0 (©)

— A necessary condition for symmetry persistence is now be
written o7 <2 5(g2
ove(p oVFP (o
#\@ﬂﬂr#\w—o >0 ()
0P 0¢?
— The first term in the above equation is the derivative of the
classical potential, m2/2 < 0 for our purposes

— This inequality tells us that determining if the symmetry is
broken depends on the relative strengths of the ¢? terms



Effective Potential Ill: Critical Temperature

— Now we define the critical temperature of symmetry
restoration _
OVP<(g?) m
T 40T Ty (8)
— The zero temperature piece of the effective potential contains
symmetry breaking and thus a negative m?

— The finite temperature piece contributes positively to m?

— At critical temperature 3. the two terms balance out and the
symmetry breaking is removed [2]



One Loop I: Interacting Scalar Field ¢*

— A precursor to the effective potential is the finite temperature
Green's function

re PH X
Dy(x —y) = T TEONEL) (9

— Using the machinery of functional determinants we learned in
QFT Il we know that we will encounter

log Det iDgl(x — y) = (space-time volume) tr log iDgl(k)
(10)
— The tree-level piece of the effective potential is easily
computed and temperature independent
A s
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One Loop Il: Effective Potential

— Now to calculate the one loop temperature dependent
effective potential

V2 (g?) = - " trlog(i D~Y(; k))
3
= 2152/ gﬁk3log(k2—l\/12)
3
52/ ;”)(3'0% —wp) (12)

- M?=m’+ %)\@2, wp is the Matsubara frequency,

wk = V k2 + M2 contributes to the zero point energy of the
vacuum




One Loop IlI: High Temperature Limit

— Computing the sum requires some clever manipulation, see
appendix for details, the result is

VE(8?) = V(@?) + V(22)

Bk we 1 d3k
= [ —— 2+ [ —log(l— e P 1
[ps 5 ) prsa-e 09
— The second term is the free energy of an ideal bose gas!

— Now we approximate the second term by expanding in the
limit 8 — 0, the high temperature limit
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One Loop IV: Critical Temperature

Using the definition of 8. defined previously, we calculate the
critical temperature for the symmetry restoration

1 —12m?

i ? (15)

This result only depends on the T2 term in the series

As a consistency check, take A to be small and we see that
the critical temperature is indeed large

So we now have a phase transition, but what order is it?



Phase Transition |
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Figure 1: Vg at varying temperatures

— This plot shows a second order phase transition, but the one
loop analysis cannot unambiguously tell us what order
transition occurs



Phase Transition |l

— In the calculation of the one loop effective potential, we may
3
worry about the strength of —ﬁ%

— This term includes ¢33 and if relevant can cause a first order

phase transition

Vet (1, T)

Figure 2: First order phase transition (Senaha)



Phase Transition IlI

— To determine the order we must resum the series but this also
contains ambiguity

— If one only includes a resummation of daisy or superdaisy
diagrams, the transition is first order

— If along with daisy/superdaisy one includes sunset diagrams
the phase transition is determined to be second order

— Peskin and Schroeder show that p* has second order phase
transition at zero temperature so the latter resummation is
considered correct [3] [4]

At

(a) Superdaisy (b) Sunset

Figure 3: Borrowed from L. Dolan and R. Jackiw [2]



Gauge

Theory

Extension to gauge theory is nontrivial because the partition
function is gauge dependent

Only physical gauges will give meaningful results, for example
consider the Feynman gauge

d3k —
logZ = 3/ (27r)3[ iwk —log(1 — e7#9¥)]

3k —Bw
+ / (;jﬂ’;[ B2 K _log(1+ e P%)] (16)

There are two extra unphysical states, the longitudinal and
timelike photons [1]

Bernard solves this problem with Fadeev Popov ghosts and
defines a gauge-invariant partition function that is equal to
tr e " only in physical gauges



EWPT

The SM case of symmetry restoration is more complicated
because the previously real scalar is now a complex doublet
and we have additional interactions with SM particles not
included in ©*

Following Senaha, the effective potential for the SM case
considering first order phase transition is

A
Vetr(p, T) = D(T? = T§)¢® — ET|g* + ZF¢* - (17)

The cubic term in ¢ is indicative of a first order PT

Numerical calculation gives T¢ ~ 163.4 GeV



Conclusion

— The difficulty of doing finite temperature studies of phase
transitions is that they are generically non-perturbative

— Senaha suggests that lattice calculations are a better
approach for numerical results

— Finite temperature field theory has interesting consequences
for the SM and cosmology and hopefully this presentation has
piqued your interest

— First order phase transitions can create gravitational waves
which recently has become a very interesting observable (ask
Anthony)
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Appendix: Computing Sum

— Simplest method following Jackiw

472 n?

v(E) =) log( P + E?) (18)
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v(E) = 25[5 + Blog(l — e 7F)] +indep. E (21)
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